

Palm Springs, California

Protecting Air Quality in the Workplace

Henry M. Healey, P.E.
Healey & Associates
Merritt Island, Florida
http://www.flaenergy.com

©Henry M. Healey, P. E.

Indoor Air Quality

("Environmental" or "Air" Quality issues?)

- Environmental Quality
 - Air Quality
 - Lighting
 - frequency
 - glare etc
 - Noise
 - Workplace conditions
 - Workplace Layout
 - Interior Design
 - Other

- Air Quality Issues
 - > Temperature
 - Humidity
 - Contaminants, odors, pollutants etc.
 - Visible deposits
 - Mold mildew
 - Air movement

Causes of IAQ Problems NIOSH Study

Findings in Buildings with Reported "IAQ" Problems

June 2-5, 2002

Henry M. Healey P.E.

Major Contributors to IAQ Problems

Building envelope & maintenance

- air leaks (uncontrolled entry of outdoor air)
- water or moisture intrusion
- Housekeeping & HVAC maintenance procedures

Contamination

- indoor or outdoor sources
- build up of contamination

HVAC System

- air distribution
- humidity control
- filtration
- insufficient ventilation (air turnover)

Findings in Buildings with "IAQ" Problems

- Humidity extremes resulting in mold and mildew
- Poor Air Distribution
- Building envelope problems
- Indoor pollutants and/or off-gassing of materials
- Not enough, or poor quality of, fresh air
- Contamination from exterior sources
- Housekeeping and maintenance issues
- Incidents

What should we do to address IAQ Problems?

Improve (Lower) humidity levels

- > Address water leaks in, or into, building **immediately**
- Prevent or reduce infiltration of humid air
- Add Controls for humidity
- Precondition (dehumidify) fresh air before it enters HVAC

Reduce contaminants

- Improve filtration and ventilation (ACH)
- Improve housekeeping & maintenance
- Monitor what's brought inside

Check air distribution and fresh air

- Sufficient air movement throughout space
- Sufficient fresh air to meet ASHRAE 62 and pressurization

Most Serious IAQ Problems are Moisture Related

- Air leaks in building envelope or ductwork results in the entry of moist unconditioned air
- Water intrusion and/or moisture migration through the building envelope
- Oversized AC system limits moisture removal
- Spores are everywhere in our environment

Humidity levels above 60%-70% will result in microbial growth!

Palm Springs, California

To Ensure Good IAQ Relative Humidity Levels Must be Maintained within an Acceptable Range

Optimum Range: 40%-60% RH

Optimum Relative Humidity Levels

Psychometric Chart

Moisture Content of Air

temperature Vs. relative humidity Relative Humidity

June 2-5, 2002

Henry M. Healey P.E.

12

Address Humidity Levels

- Why do we have high Humidity in buildings?
 - air or water leaks into building
 - poorly performing HVAC system
 - no real control of humidity
 - Improper operation of HVAC system
 - Oversized unit
 - > etc.
- How can address high humidity levels easily?
 - Eliminate water or air leaks or intrusion immediately
 - Add humidity control & reheat strategy
 - Reduce or eliminate the moisture load from the building

Reduce Contaminants

- By cleaning and exchanging indoor air
 - Proper Filtration
 - Appropriate for the contaminants
 - Good Air Distribution
 - Adequate air movement throughout Work Area
 - Adequate turn-over of indoor-outdoor air (ACH)

Proper Filtration

(filters come in all shapes all sizes)

Pleated Filter

If you can see through a filterit's <u>not</u> a filter

HEPA Filter 99.97% of 0.3u

Relative Performance

Efficiency vs. Particle Size

- Compiled and averaged from data furnished by manufacturers.
 Efficiency and arrestance per ASHRAE standard 52-76 test methods.
 Caution: Curves are approximations only for general guidance. Values derived from them must generally by used to specify air filters since A.

Filter Efficiency Rating

(Minimum Efficiency Rating Value-MERV)

Minimum Efficiency Reporting Value (MERV)				
MERV	ASHRAE	P Dp	Contamnts	Application
1	<65% A	0.3	Poln Moss	Min Fltr
2	65-70%A	0.3	D Mites	W AC
3	70-75%A	0.3	T Fibers	Res
4	>75%A	0.3	Carpet fbr	Res
5	80-85%A	0.6	Pdr milk	Paint Booth
6	>90%A	0.6	Dust	Industrl
7	>90%A	0.6	H Spray	B Res
8	>90%A	0.6	M spores	Coml
9	40-45%DS	1	fumes	Coml
10	50-55%DS	1	coal dust	S Res
11	60-65%DS	1	flour	Btr Cml
12	70-75%DS	1	Legionella	Labs
13	80-90%DS	1.4	Copiers	Sup Cml
14	90-95%DS	1.4	smoke	Smokg A
15	>95%DS	1.4	sneezing	Surgery
10	>0070DO			,

HVAC Equipment

(potential source of contamination)

HVAC System Contamination

Cooling Coil With Microbial Growth

Drain Pan With Microbial Growth

- Cooling coils and drain pans provide ideal growth conditions for microbes.
- Cooling Coil surfaces are coated with this "biofilm" that reduces heat exchange efficiency thus consuming more energy.

UVGI Installation

Typical UV Light Installation In Air Discharge Plenum Cooling Coil located to work on both the cooling coil and the drain pan Henry M. Healey P.E.

UV Recommendations

- Suitable for keeping problem drain pans, interior of AHU, and coils clean
- Can combine with filtration to increase effectiveness against biological contaminants

UVGI Treatment

Before installation of UV

After UV Installation

Installation of UV resulted in the elimination of virtually all the organic matter embedded within a coil restoring the coil surface for increased heat exchange efficiency. The installation also eliminated growth in drain pan.

Good Air Distribution

- Adequate air movement throughout the space
 - Air Flow in the Workspace (cfm/sf)
 - Distribution System (supply/return layout)
- Adequate turn-over of indoor-outdoor air (ACH)
 - Ventilation Rate-amount of fresh air (ASHRAE 62)
- Building pressurization

Adequate Fresh Air

(without getting in a bind)

- Sufficient for Air Change Rate (ACH)& occupants
 - > ASHRAE (Code) requirements
- Sufficient to offset air losses
 - Exhaust fans
 - leakage through doors, windows, cracks etc.
- Sufficient for appropriate pressurization
 - Climate specific
 - Positive in warm/humid climates
 - Neutral or slightly negative in cool climates
- Eliminate or reduce fresh air when not required
- Simply adding fresh air may be problematic

Pre Treating Outdoor Air

- Preconditioning, dehumidifying and filtering, the Outdoor Air is a simple, energy efficient solution to the humidity and comfort problems faced by most building managers today.
- This approach essentially removes moisture in the outdoor air, and its associated impact on internal humidity levels, as an issue and promotes efficient operation of a buildings HVAC system

Energy Savings from OA Pre-Treatment Installation

Palm Springs, California

Indoor Air Quality and Energy Conservation

Are <u>Not</u> Mutually Exclusive! We Can Improve IAQ, Save Energy and Protect the Building's Occupants

Palm Springs, California

Protection of Air Quality in the Workplace

Henry M. Healey, P.E.
Healey & Associates
http://www.flaenergy.com

Palm Springs, California

Protecting Workplace Air Quality Today-Post 9/11

Considering Bioterrorism and other Extraordinary Incidents

Bioterrorism

Has raised the issue of Air Quality in Buildings to a whole new level

Building Security, Health & Safety Programs today must include provisions for

Protecting and reacting to threats
to the Indoor Air from
Biological & Chemical Terrorism & other
Extraordinary Incidents

Bioterrorism

Use of biological agents including bacteria, viruses and toxins against the general population

- Anthrax
- Smallpox
- Plague
- Botulism
- Terramin
- Others

Extraordinary Incidents That Impact IAQ

- Accidents
 - Toxic Clouds or Releases
 - Hazardous Spills
 - Sudden Explosions
- Forest Fires
- Air Pollution Alerts
- Natural Disasters

Safety & Security of Building Air Quality

Must Protect Building Occupants from Airborne Biological, Chemical or Toxic Releases Outside or Inside a Building Caused by Terrorism, Accidents or Natural Disasters

Protecting Building Occupants from Airborne Biological or Chemical Releases Outside or Inside a Building

Hazards include:

- Hazardous fumes
 - smoke from fires
 - chemicals from explosions or other incidents
- Noxious chemicals
 - spills or releases
- Biological aerosols or particles
 - incidents
 - intentional release

Bioterrorism Incident

- No immediate impact or detection
- Hours of potential exposure
- Delay between exposure and illness
 - Anthrax symptoms takes days
 - > smallpox takes longer-weeks
- Requires advanced and emergency planning
 - > to increase security of a buildings air supply
 - > to control and/or minimize impact of incident

Personal Observations

(a matter of being in the wrong place at the wrong time)

- Suspicious package found
- Put in envelope to contain contents
- Called Emergency personnel
- Building Locked down until Responders on site
- Occupants rather edgy
- HVAC left running
- Two hours later Darth Vader appears in building
- Testing initiated-Field Test Negative (lab test within 24 hrs)
- Occupants allowed to leave & shower
- Not happy campers

Personal Observations on Bioterrorism Training

- Responder Training Great
- Most Training focused on Response Actions & Procedures, Testing, Detection and Disinfection
- Little Effort in Awarness and Safety Training for Building Managers and Occupants
- Development of Building Air Quality Protective Systems progressing very slowly

Anthrax Incidents Lessons Learned

- Airborne materials can easily spread
- Appropriate Cleanup Procedures should be used
- There is a lot of readily available strategies that can be used to limit exposure and/or impact
- Quick action by those on site can make a difference

Anthrax Incidents

Explosive dispersal into Return or Outdoor air intake

Release

Exposure Infection Dose-10,000 Lethal Dose-28,000 (50%)

June 2-5, 2002

Henry M. Healey P.E.

Level to infect 50% of those Exposed

Airborne Hazards

(Biological, Chemical or Other Incidents)

- Biological & Chemical
 - Detectors not available that can rapidly detect the range of Chemical or Biological hazards possible
 - Biological agents imperceptible, difficult to detect
- Extraordinary Incidents
 - Sudden & unexpected
 - often perceptible at occurrence
- Protection needs to be in place
 - Standard approaches
 - filtering air into a building
 - emergency air distribution controls
 -other

Reduce the Terror with Planning

- Develop a **BAQ Safety Program** with appropriate policies and procedures
- Train occupants and facility managers
 - proactive security measures
 - safety procedures
 - response actions
 - appropriate work & cleanup procedures
- Implement "engineering controls" to secure and protect building air quality
- Use PPE as required in critical areas

BAQ Safety Program

Safety Program Plan

- Identify potential hazards and air quality problems
- Asses buildings vulnerability to airborne threats
 - Internal releases
 - External releases
- Develop appropriate response actions and training
- Evaluate use of engineering controls to reduce threats
- Identify appropriate PPE as required

Assessing BAQ Safety & Security

Assess Vulnerabilities

- Air intakes
- Receiving areas
- Entry areas
- Hazardous material labs/storage

Ventilation System

- Supply & return & exhaust systems
- Make up air quality/quantity
- > Filtration
- Operational controls
- Review existing Safety Programs

Occupant Training

- Awareness Training on IAQ
 - Understanding IAQ and the necessity to report potential problems
 - Avoid contributing to the problems with deodorizers, chemicals etc.
 - Reporting potential problems
 - Avoid blocking ventilation pathways
- Training related to Extreme Incidents

Conduct a Vulnerability Assessment of the Building

- Hazard assessment
 - Sources of entry
 - > Areas of potential contamination
- Ventilation system and building pressurization
 - air intakes
 - exhausts
 - relative pressurization
 - areas served by HVAC units
 - > HVAC system controls
- Interior safe rooms

Engineering Controls

- Elevate/Secure Outdoor Air Intakes
- Isolate Entry and Receiving Areas
- Control Dampers to seal buildings
- Outdoor Air Pretreatment System
- Operational Control of HVAC equipment
- Enhanced filtration
- HEPA exhaust systems
- Reconfigure HVAC in hazardous work areas
- Other as appropriate for the site

BAQ Safety/Security Plan

pro-active BAQ

Henry M. Healey P.E.

Ventilation System

- What AHU serves the impacted area
- How can it be shut down
- Where is the closest exhaust system

BAQ Protective Approaches

(Engineering Controls)

- Protection of fresh air intakes
- High efficiency filtration of "high risk" areas
- Building Pressurization
- Dedicated OA units
 - secure locations
 - > with control dampers
- Directional airflow
 - Laboratory
 - Isolation/clean room approach

OA Pre-Treatment System

(addresses IAQ while reducing energy)

Dedicated "OA" Pre-Treatment Unit

- 100% OA Unit(s) to provide all fresh air to a building
- OA system will be designed to filter & dehumidify all air entering a building air and maintaining pressurization in the building to eliminate the entry of untreated outdoor air

OA and Exhaust Control Dampers

- Controllable Dampers to eliminate OA and Exhaust leaks and seal the building during unoccupied periods or in the event of threats from outside the building
- **DDC Controls to provide**
 - for Safety and health hazard mitigation
 - operational and humidity control of building
 - centralized control of entire HVAC System
 - optimum efficiency of HVAC System

Bioterrorism in Buildings Readily Addressed

- Release of biological or chemical hazards in (or into) buildings
 - Engineers and HVAC designers routinely deal with toxic materials in industrial, laboratory or medical facilities
 - > Particle size in the range 1 to 5 microns
 - > Filtration, containment, air flow control and pressurization are key.
 - Asbestos abatement, Laboratory Safety, IAQ and Biohazardous material handling and related programs and procedures are proven and readily available.

Typical Isolation Room

(Directional airflow)

HEPA Filtration

RELATIVE SIZE OF COMMON AIR CONTAMINANTS

Mailroom Sorting Area Upgrade

- Isolation Room approach (negative with respect to surrounding area)
- Directional airflow (lab or cleanroom approach)
 - from above
 - over breathing zone
 - then work area
 - low exhaust (could be filtered)
- PPE readily available

Cleanup

- Procedures appropriate for the contaminant
- Decontaminate using ACM approach (Negative Pressure Machines), Disinfectants, PPE as rqd.
- Vacuum cleaners equipped with High Efficiency Particulate Air (HEPA) filters should be standard

Incorporating BAQ Protection into New Construction

Outdoor Air

- Intakes above ground (first floor) level
- Pre conditioning unit with controls & dampers
- Security & monitoring

HVAC

- upgraded filtration, UV, pressurization, zone strategy
- Emergency Shutoff
- Zone Isolation for High Risk Areas
 - Entry Areas
 - Receiving Areas
 - Mail Rooms
- Physical Location of High Risk Areas Perimeter of building

Building Air Quality can protect against Bioterrorism and Extreme Incidents (to some extent) using readily available solutions to IAQ

I think the Time come to address IAQ Problems and Protect Air Quality in the Workplace!

What do you think?

Thanks for listening

Henry M. Healey, P. E.

http://www.flaenergy.com